Safety and Reliability of Embedded Systems
(Sicherheit und Zuverlässigkeit eingebetteter Systeme)

FMECA (Failure Modes, Effects and Criticality Analysis)

FMECA Definition

- Failure Modes, Effects and Criticality Analysis (FMECA) is a preventive method for the identification of problems, their risks and effects (DIN 25448, IEC 812).
- FMECA has the following goals:
 - Detection of hazards and problems
 - Identification of potential risks
 - Quantification of risks
 - Determination of corrective measures
- FMECA can be performed as component FMECA (e.g. for a hardware module), as system FMECA (e.g. for a medical device) or as process FMECA (e.g. for a system development process).

FMECA Accomplishment

- FMECA is done in the following steps:
 - Fault analysis: Collection of possible faults including available information about the type, causes and consequences.
 - Risk evaluation with the aid of the risk priority number (RPZ).

RPZ = occurrence probability * severity of consequences * probability of non-detection

- If for the three influencing factors a value between 1 and 10 is used (1 = no risk, minor occurrence; 10 = high risk, high occurrence), the RPZ is a value between 1 and 1000.
- The risk priority number generates a ranking for the causes of faults.
- Causes of faults with a high risk priority number are to be handled with priority.
Formulate proposed actions
- Gear proposed solutions towards fault prevention
- High occurrence probabilities of faults: An improvement is definitely necessary (also in the case of low severity and high detection probability)
- High severity: In this case corrective measures are also required because of the consequences
- High non-detection probability: Improvement of detection probability by suitable analytical instruments

Decide for actions
- Analyze residual risk (recalculate RPZ)
- Conduct cost-benefit analysis
- Comparison of RPZ before and after the improvement
- Relate obtained improvement to invested effort

FMECA Accomplishment

FMECA Literature

- DIN 25448, Ausfallfälleanalyse (Fehler-Möglichkeits- und -Einfluß-Analyse), Berlin: Beuth Verlag, Mai 1990
- Liggesmeyer, Qualitätssicherung softwareintensiver technischer Systeme, Heidelberg: Spektrum-Verlag, 2000
- Mäckel O., Software-FMEA: Chancen und Nutzen der FMEA im Entwicklungsprozess, QZ Qualität und Zuverlässigkeit, Januar 2001, pp. 65 – 68